Общая информация
Трансформаторы тока преимущественно используются в тех случаях, когда невозможно измерить ток напрямую. Это специальный тип трансформаторов , которые преобразуют первичный ток в меньший (как правило), нормированный вторичный ток определенной точности (класса), а также гальванически разделяют первичный и вторичный контур. Физически обусловленное насыщение материала сердечника дополнительно обеспечивает защиту вторичного контура от слишком сильных токов.
Различают одновитковые и многовитковые трансформаторы тока. Наиболее распространенным видом одновиткового трансформатора тока является шинный трансформатор тока, который насаживается на проводящий ток кабель и превращается, таким образом, в трансформатор с первичной обмоткой (и вторичными обмотками в соответствии с коэффициентом трансформации).
Выбор трансформаторов тока
Коэффициент преобразования
Расчетный коэффициент трансформации – это отношение первичного расчетного тока к вторичному расчетному току, он указан на табличке с паспортными данными в виде неправильной дроби.
Чаще всего используются трансформаторы x / 5 A. Большинство измерительных приборов имеют при 5 A больший класс точности. По техническим и, прежде всего, по экономическим соображениям при большой длине измерительной линии рекомендуется использовать трансформаторы x / 1 A. Потери в линии в 1-A-трансформаторах составляют всего 4 % от потерь 5-A-трансформаторов. Но в этом случае измерительные приборы имеют обычно меньший класс точности.
Номинальный ток
Расчетный или номинальный ток (использовавшееся прежде название) – это указанное на табличке с паспортными данными значение первичного и вторичного тока (первичный расчетный ток, вторичный расчетный ток), на которое рассчитан трансформатор. Нормированные расчетные токи (кроме классов 0,2 S и 0,5 S) равны 10 – 12,5 – 15 – 20 – 25 – 30 – 40 – 50 – 60– 75 A, а также числам, полученным из этих значений умножением на число, кратное десяти. Нормированные вторичные токи равны 1 и 5 A, предпочтительно 5 A.
Нормированные расчетные токи для классов 0,2 S и 0,5 S равны 25 – 50 – 100 A, а также числам, полученным из этих значений умножением на число, кратное десяти, вторичный ток (только) 5 A.
Правильный выбор номинального тока первичной обмотки очень важен для точности измерения. Рекомендуется максимально близкое сверху к измеренному / определенному току (In) отношение.
Пример: In = 1 154 A; выбранное отношение = 1 250/5.
Номинальный ток можно определить на основании следующих предпосылок:
• Номинальный ток трансформатора, умноженный на приблиз.1,1 (трансформатор с ближайшими характеристиками)
• Предохранитель (номинальный ток предохранителя = номинальный ток трансформатора) измеряемой части установки (низковольтные главные распределительные щиты, распределительные шкафы)
• Фактический номинальный ток, умноженный на 1,2 (этот метод нужно использовать, если фактический ток значительно ниже номинального тока трансформатора или предохранителя)
Нежелательно использовать трансформаторы с избыточными расчетными величинами, т.к. в этом случае может сильно снизиться точность измерения при относительно низких токах (относительно первичного расчетного тока).
Расчетная мощность
Расчетная мощность трансформатора тока – это результат нагрузки со стороны измерительного прибора и квадранта вторичного расчетного тока, она измеряется в ВA. Нормированные значения равны 2,5 – 5 – 10 – 15 – 30 ВА. Можно также выбирать значения, превышающие 30 ВА в соответствии с видом применения. Расчетная мощность описывает способность трансформатора пропускать вторичный ток в пределах допускаемой погрешности через нагрузку.
При выборе подходящей мощности необходимо учесть следующие параметры: потребление мощности измерительными приборами (при последовательном подключении), длина кабеля, поперечное сечение кабеля. Чем больше длина кабеля и меньше его поперечное сечение, тем больше потери в питающей линии, т.е. номинальная мощность трансформатора должна иметь соответствующую величину.
Мощность потребителей должна быть близка к расчетной мощности трансформатора. Очень низкая мощность потребителей (пониженная нагрузка) повышает кратность тока нагрузки, поэтому измерительные приборы могут быть недостаточно защищены от короткого замыкания. Слишком большая мощность потребителей (перегрузка) отрицательно сказывается на точности.
Часто в системе уже имеются трансформаторы тока, которые можно использовать при установке нового измерительного прибора. При этом нужно обратить внимание на номинальную мощность трансформатора: достаточна ли она для дополнительных измерительных приборов?
Классы точности
В зависимости от точности трансформаторы тока делятся на классы. Стандартные классы точности: 0,1; 0,2; 0,5; 1; 3; 5; 0,1 S; 0,2 S; 0,5 S. Коду класса соответствует кривая погрешностей тока и угловая погрешность.
Классы точности трансформаторов тока зависят от значения измерения. Если трансформаторы тока работают с малым по отношению к номинальному току током, точность измерения существенно снижается. В приведенной ниже таблице указаны предельные значения погрешности с учетом значений номинального тока:
Для комбинированных измерительных устройств рекомендуется использовать трансформаторы тока того же класса точности. Трансформаторы тока с более низким классом точности приводят к снижению точности измерения всей системы – преобразователь тока + измерительное устройство, которое в этом случае определяется классом точности трансформатора тока. Тем не менее, использование трансформаторов тока с меньшей точностью измерения, чем в измерительном устройстве, возможно с технической точки зрения.
Кривая погрешностей трансформаторного тока
Измерительные трансформаторы и защитные трансформаторы
В то время, как измерительные трансформаторы должны максимально быстро насыщаться после выхода за диапазон потребляемого тока (выражается кратностью тока нагрузки FS), чтобы предотвратить рост вторичного тока в случае сбоя (например, короткого замыкания) и защитить таким образом подключенные приборы, защитные трансформаторы не должны насыщаться максимально долго.
Защитные трансформаторы используются для защиты установки в сочетании с соответствующими коммутирующими устройствами. Стандартные классы точности для защитных трансформаторов – 5P и 10P. “P” означает “protection” – “защита”. Номинальная кратность тока нагрузки указывается (в %) после обозначения класса защиты. Например, 10P5 означает, что при пятикратном номинальном токе негативное отклонение со стороны вторичного тока от значения, ожидаемого в соответствии с коэффициентом трансформации (линейно), составляет не более 10 % от ожидаемого значения.
Для комбинированных измерительных приборов настоятельно рекомендуется использовать измерительные трансформаторы.
Стандартный размер шины для трансформаторов